Printer Friendly Version
Printer Friendly Version
Printer Friendly Version
A.7.01.96
Computer-assisted navigation in orthopedic procedures describes the use of computer-enabled tracking systems to facilitate alignment in a variety of surgical procedures, including fixation of fractures, ligament reconstruction, osteotomy, tumor resection, preparation of the bone for joint arthroplasty, and verification of the intended implant placement.
Implant Alignment for Knee Arthroplasty
For total knee arthroplasty, malalignment is commonly defined as a variation of more than 3° from the targeted position. Proper implant alignment is believed to be an important factor for minimizing long-term wear, the risk of osteolysis, and loosening of the prosthesis.
Computer-Assisted Navigation
The goal of computer-assisted navigation is to increase surgical accuracy and reduce the chance of malposition.
In addition to reducing the risk of substantial malalignment, computer assisted navigation may improve soft tissue balance and patellar tracking. Computer assisted navigation is also being investigated for surgical procedures with limited visibility such as placement of the acetabular cup in total hip arthroplasty, resection of pelvic tumors, and minimally invasive orthopedic procedures. Other potential uses of computer assisted navigation for surgical procedures of the appendicular skeleton include screw placement for fixation of femoral neck fractures, high tibial osteotomy, and tunnel alignment during reconstruction of the anterior cruciate ligament.
Computer assisted navigation devices may be image-based or non-image based. Image-based devices use preoperative computed tomography scans and operative fluoroscopy to direct implant positioning. Newer non-image based devices use information obtained in the operating room, typically with infrared probes. For total knee arthroplasty, specific anatomic reference points are made by fixing signaling transducers with pins into the femur and tibia. Signal-emitting cameras (e.g., infrared) detect the reflected signals and transmit the data to a dedicated computer. During the surgery, multiple surface points are taken from the distal femoral surfaces, tibial plateaus, and medial and lateral epicondyles. The femoral head center is typically calculated by kinematic methods that involve movement of the thigh through a series of circular arcs, with the computer producing a three-dimensional (3D) model that includes the mechanical, transepicondylar and tibial rotational axes. Computer assisted navigation systems direct the positioning of the cutting blocks and placement of the prosthetic implants based on the digitized surface points and model of the bones in space. The accuracy of each step of the operation (cutting block placement, saw cut accuracy, seating of the implants) can be verified, thereby allowing adjustments to be made during surgery.
Navigation involves 3 steps: data acquisition, registration, and tracking.
Data Acquisition
Data can be acquired in 3 ways: fluoroscopically, guided by computed tomography scan or magnetic resonance imaging, or guided by imageless systems. These data are then used for registration and tracking.
Registration
Registration refers to the ability of relating images (i.e., radiographs, computed tomography scans, magnetic resonance imaging, or patients’ 3D anatomy) to the anatomic position in the surgical field. Registration techniques may require the placement of pins or “fiduciary markers” in the target bone. A surface-matching technique can also be used in which the shapes of the bone surface model generated from preoperative images are matched to surface data points collected during surgery.
Tracking
Tracking refers to the sensors and measurement devices that can provide feedback during surgery regarding the orientation and relative position of tools to bone anatomy. For example, optical or electromagnetic trackers can be attached to regular surgical tools, which then provide real-time information of the position and orientation of tool alignment with respect to the bony anatomy of interest.
The VERASENSE (OrthoSense) is a single-use device that replaces the standard plastic tibial trial spacer used in total knee arthroplasty. The device contains microprocessor sensors that quantify load and contact position of the femur on the tibia after resections have been made. The wireless sensors send the data to a graphic user interface that depicts the load. The device is intended to provide quantitative data on the alignment of the implant and on soft tissue balancing in place of intraoperative “feel.”
iASSIST (Zimmer) is an accelerometer-based alignment system with a user interface built into disposable electronic pods that attach onto the femoral and tibial alignment and resection guides. For the tibia, the alignment guide is fixed between the tibial spines and a claw on the malleoli. The relation between the electronic pod of the digitizer and the bone reference is registered by moving the limb into abduction, adduction, and neutral position. Once the information has been registered, the digitizer is removed and the registration data are transferred to the electronic pod on the cutting guide. The cutting guide can be adjusted for varus/valgus alignment and tibial slope. A similar process is used for the femur. The pods use wireless exchange of data and display the alignment information to the surgeon within the surgical field. A computer controller must also be present in the operating room.
Since computer assisted navigation is a surgical information system in which the surgeon is only acting on the information that is provided by the navigation system, surgical navigation systems generally are subject only to 510(k) clearances from the U.S. Food and Drug Administration (FDA). As such, the FDA does not require data documenting the intermediate or final health outcomes associated with computer assisted navigation. (In contrast, robotic procedures, in which the actual surgery is robotically performed, are subject to the more rigorous requirement of the premarket approval application process.)
A variety of surgical navigation procedures have received FDA clearance through the 510(k) process with broad labeled indications. For example, the OEC FluoroTrak 9800 plus is marketed for locating anatomic structures anywhere on the human body.
Several navigation systems (e.g., PiGalileo™ Computer-Assisted Orthopedic Surgery System, PLUS Orthopedics; OrthoPilot® Navigation System, Braun; Navitrack® Navigation System, ORTHOsoft) have received FDA clearance specifically for total knee arthroplasty. The FDA-cleared indications for the PiGalileoTM system are representative. This system “is intended to be used in computer-assisted orthopedic surgery to aid the surgeon with bone cuts and implant positioning during joint replacement. It provides information to the surgeon that is used to place surgical instruments during surgery using anatomical landmarks and other data specifically obtained intraoperatively (e.g., ligament tension, limb alignment). Examples of some surgical procedures include but are not limited to:
In 2013, the VERASENSE™ Knee System (OrthoSensor) and the iASSIST™ Knee (Zimmer) received 510(k) clearance from the FDA.
Computer-assisted Navigation Devices Cleared by the U.S. Food and Drug Administration
Device | Manufacturer | Date Cleared | 510(k) No. | Indication |
Vital Navigation System | Zimmer BiometSpine, Inc. | 12/02/2019 | K191722 | Computer-assisted Navigationfor Orthopedic Surgery |
Stryker Navigation System With SpinemapGo Software Application, Fluoroscopy Trackers AndFluoroscopy Adapters. Spinemask Tracker | Stryker Corporation | 2/14/2019 | K183196 | Computer-assisted Navigationfor Orthopedic Surgery |
NuVasive Pulse System | NuVasive Incorporated | 6/29/2018 | K180038 | Computer-assisted Navigation for Orthopedic Surgery |
VERASENSE for Zimmer Biomet Persona | OrthoSensor Inc. | 6/7/2018 | K180459 | Computer-assisted Navigation for Orthopedic Surgery |
NuVasive Next Generation NVM5 System | NuVasive Incorporated | 3/16/2017 | K162313 | Computer-assisted Navigation for Orthopedic Surgery |
Stryker OrthoMap Versatile Hip System | Stryker Corporation | 2/23/2017 | K162937 | Computer-assisted Navigation for Orthopedic Surgery |
JointPoint | JointPoint Inc. | 8/3/2016 | K160284 | Computer-assisted Navigation for Orthopedic Surgery |
Exactech GPS | Blue Ortho | 7/13/2016 | K152764 | Computer-assisted Navigation for Orthopedic Surgery |
Verasense Knee System | OrthoSensor Inc. | 4/15/2016 | K150372 | Computer-assisted Navigation for Orthopedic Surgery |
iASSIST Knee System | Zimmer CAS | 9/11/2014 | K141601 | Computer-assisted Navigation for Orthopedic Surgery |
CTC TCAT(R)-TPLAN(R) Surgical System | Curexo Technology Corporation | 8/18/2014 | K140585 | Computer-assisted Navigation for Orthopedic Surgery |
Digimatch Orthodoc Robodoc Encore Surgical System | Curexo Technology Corporation | 5/27/2014 | K140038 | Computer-assisted Navigation for Orthopedic Surgery |
Computer-assisted surgery for orthopedic procedures of the pelvis and appendicular skeleton is considered investigational.
Federal Employee Program (FEP) may dictate that all devices approved by the FDA may not be considered investigational. Therefore, FDA-approved devices may be assessed on the basis of their medical necessity.
The coverage guidelines outlined in the Medical Policy Manual should not be used in lieu of the Member's specific benefit plan language.
Investigative is defined as the use of any treatment procedure, facility, equipment, drug, device, or supply not yet recognized as a generally accepted standard of good medical practice for the treatment of the condition being treated and; therefore, is not considered medically necessary. For the definition of Investigative, “generally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, and physician specialty society recommendations, and the views of medical practitioners practicing in relevant clinical areas and any other relevant factors. In order for equipment, devices, drugs or supplies [i.e, technologies], to be considered not investigative, the technology must have final approval from the appropriate governmental bodies, and scientific evidence must permit conclusions concerning the effect of the technology on health outcomes, and the technology must improve the net health outcome, and the technology must be as beneficial as any established alternative and the improvement must be attainable outside the testing/investigational setting.
1/17/2008: Policy added.
12/29/2008: Code reference section updated per the 2009 CPT/HCPCS revisions.
1/8/2009: Policy reviewed, no changes.
6/23/2010: Description section revised. FEP verbiage was added to Policy Exceptions section. Code Reference section revised to remove CPT Codes 20986 and 20987 because the codes were deleted 12/31/2008. CPT Codes 0054T and 0055T were added to the Non-Covered Codes Table.
07/29/2011: Policy reviewed; no changes.
09/25/2012: Policy reviewed; no changes.
11/06/2013: Policy reviewed; no changes.
08/22/2014: Policy reviewed; description updated regarding devices. Policy statement unchanged.
07/13/2015: Code Reference section updated for ICD-10.
11/02/2015: Policy reviewed. Policy statement unchanged. Investigative definition updated in policy guidelines section.
05/31/2016: Policy number A.7.01.96 added.
01/30/2017: Policy title changed from "Computer-Assisted Musculoskeletal Surgical Navigational Procedure" to "Computer-Assisted Navigation for Orthopedic Procedure." Policy description updated. Policy statement unchanged.
05/07/2018: Policy description updated regarding surgical navigation procedures. Policy statement unchanged.
05/14/2019: Policy description updated regarding devices. Policy statement unchanged.
05/27/2020: Policy description updated regarding devices. Policy statement unchanged.
08/30/2024: Policy reviewed; no changes.
Blue Cross & Blue Shield Association Policy # 7.01.96
This may not be a comprehensive list of procedure codes applicable to this policy.
Code Number | Description |
CPT-4 | |
20985 | Computer-assisted surgical navigational procedure for musculoskeletal procedures, image-less (List separately in addition to code for primary procedure) |
0054T | Computer-assisted musculoskeletal surgical navigational orthopedic procedure; with image-guidance based on fluoroscopic images (List separately in addition to code for primary procedure) |
0055T | Computer-assisted musculoskeletal surgical navigational orthopedic procedure; with image-guidance based on CT/MRI images (List separately in addition to code for primary procedure) |
HCPCS | |
ICD-10 Procedure | |
ICD-10 Diagnosis |
CPT copyright American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association.