Printer Friendly Version
Printer Friendly Version
Printer Friendly Version
L.2.04.400
Autoantibodies to nervous system components have been detected in patients with neurologic symptoms such as paresthesias, weakness, and twitching. Many autoantibodies have been discovered and characterized; however, research is ongoing in the field of neuroimmunology and there remains a paucity of clinical trials in the peer-reviewed medical literature describing their usefulness in clinical practice. In a review on the use of autoantibodies as predictors of disease, long-term large studies of outcome are needed to assess the use of assaying autoantibodies for prediction of disease. A review of laboratory testing in peripheral nerve disease indicated that the use of antibody assays should be very selective and should not be used as "screening" studies. Antibody testing often produces results that can be confusing; thus, a stepwise and directed approach to the evaluation of peripheral neuropathy utilizing clinical examination and electrodiagnostic testing can increase the yield of finding a treatable cause.
Antibodies to Glycolipid and Glycoprotein-Related Saccharides (MAG, GM1, Asialo-GM1 (Anti-GA1), GD1a, GD1b, GQ1b,MAG-SGPG, Sulfatide)
Gangliosides are a group of glycosphingolipids widely distributed in membrane components of the nervous system. They possess a common long chain fatty acid, but exhibit distinctive carbohydrate moieties containing one or more sialic acid residues. Ganglioside nomenclature is defined by the following scheme: (i) G refers to ganglio; (ii) M, D, T, and Q refer to the number of sialic acid residues (mono, di, tri, and quad); and (iii) numbers and lower case letters refer to the sequence of migration on thin layer chromatography. The gangliosides most commonly recognized by neuropathy associated autoantibodies are GM1, asialo-GM1, GD1a, GD1b, and GQ1b.
Chronic immune-mediated polyneuropathies in which the peripheral nerves are selectively affected include chronic inflammatory demyelinating polyneuropathy (CIDP), demyelinating polyneuropathy associated with IgM anti-myelin-associated glycoprotein (anti-MAG)) antibodies or anti-sulfoglucuronyl paragloboside (anti-SGPG) antibodies, multi-focal motor neuropathy associated with IgM anti-ganglioside M1 (anti-GM1) or anti-GD1a antibodies, and sensory polyneuropathy associated with IgM anti-sulfatide antibodies or anti-GD1b or disialosyl ganglioside antibodies. Some of these autoantibodies also occur as IgM monoclonal gammopathies in patients with non-malignant monoclonal gammopathies.
Detection of ganglioside M1 (GM1) antibody, usually of the IgM isotype, is associated with multi-focal motor neuropathy and lower motor neuropathy, characterized by muscle weakness and atrophy. Multi-focal motor neuropathy may occur with or without high serum titers of anti-GM1 antibodies. GM1 antibodies are detected in approximately 50% of persons with multi-focal motor neuropathy. However, whether the presence of anti-GM1 antibody or its titer has any bearing on the response to therapy is controversial.
GM1 antibodies of the IgG and IgA isotypes may be found in association with amyotrophic lateral sclerosis (ALS). European Federation of Neurological Societies (EFNS) guidelines on amyotrophic lateral sclerosis recommend testing for anti-GM1, as well as anti-MAG and anti-Hu antibodies in selected cases.
Ganglioside glycolipid antibodies may be associated with different forms or aspects of Guillain-Barre Syndrome (GBS). Increased titers of IgG anti-GM1 or GD1a ganglioside antibodies have been associated with GBS and acute motor axonal neuropathy, and may be useful in persons suspected of having these syndromes. Antibodies to GM1 and GD1a are mostly associated with axonal variants of GBS. Antibodies to GT1a are associated with swallowing dysfunction. The GD1b ganglioside is present in peripheral nerves on the surface of sensory neurons in the dorsal root ganglion. Antibodies to GD1b are associated with pure sensory GBS.
Increased IgG anti-GQ1b ganglioside antibodies are closely associated with the Miller-Fisher syndrome, and may be useful in the evaluation of patients suspected of having this syndrome. Antibodies against GQ1b are found in 85 to 90% of patients with the Miller Fisher syndrome, characterized by ataxia, areflexia, and ophthalmoplegia. In clinical practice, commercially available testing for serum IgG antibodies to GQ1b is useful for the diagnosis of Miller Fischer syndrome, having a sensitivity of 85 to 90%. GQ1b antibodies are also found in GBS patients with ophthalmoplegia, but not in GBS patients without ophthalmoplegia. Antibodies to GQ1b may also be present in Bickerstaff encephalitis and the pharyngo-cervical brachial GBS variant, but not in disorders other than GBS.
Myelin-associated glycoprotein (MAG) is a constituent of peripheral and central nervous system myelin. High titer IgM antibodies to MAG are associated with sensorimotor demyelinating peripheral neuropathy, and are associated with multiple sclerosis, myasthenia gravis, and systemic lupus erythematosus (SLE).
Antibodies recognizing MAG react with a carbohydrate determinant that is also present on SGPG. Initial assays for MAG antibody utilized SGPG as the target antigen. However, some laboratories now perform 2 separate enzyme-linked immunosorbant assay (ELISA) procedures, one utilizing SGPG as antigen and one utilizing the entire MAG as antigen, to maximize detection of MAG antibodies. Researchers are currently examining the cross-reacted relationship of IgM binding to both SGPG and MAG and their significance in neuropathy.
AG antibodies are usually associated with the presence of an IgM monoclonal protein; approximately 50% of patients with IgM monoclonal gammopathies and associated peripheral neuropathies have detectable MAG antibodies. Detection of MAG antibodies may be useful in paraprotein demyelinating neuropathies. EFNS guidelines state that a causal relationship between a paraprotein and a demyelinating neuropathy is highly probable if there is an immunoglobulin M (IgM) paraprotein (monoclonal gammopathy of uncertain significance [MGUS] or Waldenstrom's) and there are high titers of anti-MAG or anti-GQ1b antibodies. A causal relationship is probable in persons with IgM paraprotein (MGUS or Waldenström's) with high titers of IgM antibodies to other neural antigens (GM1, GD1a, GD1b, GM2, sulfatide), and slowly progressive predominantly distal symmetrical sensory neuropathy.
Guidelines from the British Society of Haematology recommend testing for anti-MAG in persons with Waldenstrom's macroglobulinemia who present with neurological symptoms.
High titers of antibodies to the ganglioside asialo GM1 (anti-GA1) have been associated with motor or sensorimotor neuropathies. In most cases, these antibodies cross-react with the structurally related glycolipids GM1 and GD1b, although specific anti-asialo GM1 antibodies have also been reported. Some individuals with proximal lower motor neuron syndromes (P-LMN) (30%) have selective serum antibody binding to asialo-GM1 ganglioside; however, there is no evidence that P-LMN syndromes respond to immunosuppressive treatment.
Antibodies Associated with Paraneoplastic Syndromes and Associated Cancers (Anti-Hu, Anti-Yo, Anti-Ri, Anti-VGKC, Anti-VGCC, Anti-CV2, Anti-Ma, Anti-Amphiphysin, Anti-Zic4)
Paraneoplastic neurologic syndromes are a heterogeneous group of neurologic disorders associated with systemic cancer and caused by mechanisms other than metastases, metabolic and nutritional deficits, infections, coagulopathy, or side effects of cancer treatment. These syndromes may affect any part of the nervous system from cerebral cortex to neuromuscular junction and muscle, either damaging one area or multiple areas. Although a pathogenic role of paraneoplastic antibodies has not been proven, their presence indicates the paraneoplastic nature of a neurologic disorder, and in many cases, can narrow the search for an occult tumor to a few organs.
Polyclonal immunoglobulin G (IgG) anti-Hu antibodies (previously called ANNA-1) are found predominantly in patients with paraneoplastic neurologic syndromes associated with small-cell carcinoma of the lung. Anti-Hu antibodies are also expressed in most neuroblastomas and occasional other tumors (including several types of sarcoma and prostate carcinoma). Anti-Hu antibody reacts with 35- to 42-kD proteins present in nuclei and cytoplasm of virtually all neurons. The role of Hu proteins in small-cell lung cancer and the other cancers in which they are expressed is unclear. Some investigators have argued that detection of anti-Hu antibody is important to determine whether a paraneoplastic syndrome is immune-mediated and thus, in theory, amenable to immunosuppressive therapy. However, the value of immunosuppressive therapy in antibody associated paraneoplastic syndromes has not been proven in clinical studies. Although the titer of anti-Hu antibodies has been suggested as a prognostic indicator of paraneoplastic neurologic syndromes, the clinical course of these syndromes is unpredictable.
Paraneoplastic limbic encephalitis (PLE) is a rare disorder characterized by personality changes, irritability, depression, seizures, memory loss and sometimes dementia. The diagnosis is difficult because clinical markers are often lacking and symptoms usually precede the diagnosis of cancer or mimic other complications. Limbic encephalitis may be associated with voltage-gated potassium channel antibodies (VGKC) (53%). However, responsiveness to treatment is not limited to patients with VGKC antibodies. Other paraneoplastic encephalomyelitis antibodies include anti-CV2, anti-Ma1, anti-Ma2 (anti-Ta, anti-MaTa), and several other atypical antibodies. The targets of such antibodies may be quite varied, including neuropil and intraneuronal sites. Testicular cancer is associated with anti-Ma2 antibodies. The Ma2 antigen is selectively expressed in neurons and the testicular tumor. Ma2 shares homology with Ma1, a gene that is associated with other paraneoplastic neurologic syndromes, particularly brainstem and cerebellar dysfunction. Treatment of the tumor is reported to have more effect on neurologic outcome than the use of immune modulation.
The diagnosis of Lambert-Eaton myasthenic syndrome (LEMS) is usually made on clinical grounds and confirmed by electrodiagnostic studies. A serum test for voltage-gated calcium channel antibodies (VGCC) is commercially available. Treatment involves removing the cancer associated with the disease. If cancer is not found, immunosuppressive medications and acetylcholinesterase inhibitors are used with moderate success. Patients with idiopathic LEMS should be screened every 6 months with chest imaging for cancer.
Anti-Yo antibodies (also called Purkinje cell antibody type 1 or PCA-1) primarily occur in patients with paraneoplastic cerebellar degeneration (PCD) who have breast cancer or tumors of the ovary, endometrium, and fallopian tube. The target antigens of anti-Yo antibodies are the cdr proteins that are expressed by Purkinje cells and ovarian and breast cancers. A cytotoxic T cell response against cdr2 has also been identified in these patients.
Anti-CV2 antibodies, directed against a cytoplasmic antigen in some glial cells, and against peripheral nerve antigens, have been associated with several syndromes, including cerebellar degeneration, limbic encephalitis, encephalomyelitis, peripheral neuropathy, and optic neuritis. The most common tumors are SCLC, thymoma, and uterine sarcoma.
Opsoclonus is a disorder of ocular motility characterized by spontaneous, arrhythmic, conjugate saccades occurring in all directions of gaze without a saccadic interval. Although opsoclonus can be paraneoplastic in origin, it can also result from viral infections, post-streptococcal pharyngitis, metabolic disorders, metastases, and intra-cranial hemorrhage. The most frequent tumor associated with opsoclonus myoclonus in adults is small cell lung cancer. In women, however, the detection of anti-Ri (anti-neuronal nuclear autoantibody type 2, or ANNA-2) usually indicates the presence of breast cancer, although other tumors have been reported (e.g., gynecologic, lung, bladder). The target antigens of anti-Ri antibodies are the Nova proteins. In a cross-sectional study, Pranzatelli et al examined paraneoplastic antibodies in 59 children with opsoclonus-myoclonus-ataxia, 86% of them were moderately or severely symptomatic, and 68% of them had relapsed at the time of testing. This total number of patients includes 18 children with low-stage neuroblastoma (tested after tumor resection), 6 of them had never been treated with immunosuppressants. All were sero-negative for anti-Hu, anti-Ri (IgG autoantibody ANNA-2), and anti-Yo (antibodies against a Purkinje cell cytoplasmic antigen, called Yo), the 3 paraneoplastic antibodies most associated with opsoclonus-myoclonus or ataxia in adults. The findings of this study suggested that anti-Hu, anti-Ri, and anti-Yo do not explain relapses in pediatric opsoclonus-myoclonus-ataxia.
Paraneoplastic optic neuritis has been described in a few reports, usually in association with paraneoplastic encephalomyelitis or retinitis and small cell lung cancer. Some of these patients harbor antibodies to the 62kDa collapsin-responsive mediator protein-5 (CRMP-5, also called anti-CV2). However, the small number of patients, the extensive number of accompanying symptoms, and the frequent co-occurrence of other antibodies suggest low specificity and sensitivity of CRMP-5 antibodies as markers of paraneoplastic optic neuritis or retinitis associated with small cell lung cancer. Anti-Ro/SSA and anti-La/SSB antibodies, which are directed against two extractable nuclear antigens, have been detected with high frequency in patients with Sjögren's syndrome. They also have diagnostic usefulness in patients with SLE. Indications for ordering an anti-Ro/SSA antibody test include: women with SLE who have become pregnant; women who have a history of giving birth to a child with heart block or myocarditis; patients with a history of unexplained photosensitive skin eruptions; patients suspected of having a systemic connective tissue disease in whom the screening ANA test is negative; patients with symptoms of xerostomia, keratoconjunctivitis sicca and/or salivary and lacrimal gland enlargement; and patients with unexplained small vessel vasculitis or atypical multiple sclerosis.
Retinal antibodies have been associated with small cell carcinoma of the lung.
In patients with neurologic symptoms of unknown cause, detection of Zic4 antibodies has been associated with cerebellar degeneration and small-cell lung cancer (SCLC) and often associates with anti-Hu or CRMP5 antibodies (Bataller, 2004). However, there is insufficient evidence on the clinical usefulness of measuring Zic4 antibodies in the peer-reviewed medical literature.
Stiff-Person Syndrome
Stiff-person syndrome (formerly called stiff-man syndrome) is an uncommon disorder characterized by progressive muscle stiffness, rigidity, and spasm involving the axial muscles. The muscle spasms are triggered by different stimuli and may lead to limb deformities and fracture. Electrophysiological studies show continuous discharges of motor unit potentials, which improve during sleep or general anesthesia. Paraneoplastic stiff-person syndrome usually occurs in patients with breast cancer and small cell lung cancer (SCLC). Paraneoplastic muscle rigidity in association with myoclonus has also been described in patients with SCLC and progressive encephalomyelitis. The serum of patients with paraneoplastic stiff-person syndrome often contains antibodies against a protein called amphiphysin. In contrast, patients with stiff-person syndrome who do not have cancer (but who usually develop diabetes and other symptoms of endocrinopathy) have antibodies against glutamic acid decarboxylase (GAD). Both GAD and amphiphysin are nonintrinsic membrane proteins that are concentrated in nerve terminals, where a pool of both proteins is associated with the cytoplasmic surface of synaptic vesicles.
To better understand GADAb and SPS, Murinson et al studied a population of patients with clinically suspected SPS. A total of 576 patients with suspected SPS underwent ICC. Of these, 286 underwent RIA for GADAb; 116 were GADAb-positive by one or both tests. Ninety-six percent of those positive by ICC had RIA values several standard deviations above normal. RIA did not correlate with age or illness duration. Marked elevations of RIA for GADAb were characteristic of ICC-confirmed SPS, and modest elevations were not. The findings of this study indicated that patients with clinically suspected SPS almost always have either very high GADAb or undetectable GADAb. An additional important observation was that the specificity of RIA for GAD-positive SPS is sharply dependent on the diagnostic cut-off value. The authors noted that until a universal standard for GAD65 RIA is adopted, interpretation will depend on knowing the particularities of each testing laboratory.
In an editorial, Chang and Lang stated that "the data from the Murinson, et al. do not imply a pathogenic role because they found no correlation between age or duration of illness and GADAbs and no change over the course of the disease in individuals. Thus, there is no value in monitoring the antibody titer during the course of disease .... Although the exact role of GADAbs in the pathogenesis of SPS still remains elusive, Murinson, et al. have established the reliability of RIA in measuring these antibodies. Nevertheless, clinical criteria remain the benchmark for the diagnosis of SPS".
Myasthenia Gravis (MuSk, AChR Antibodies)
Myasthenia gravis (MG), an autoimmune disorder, is caused by the failure of neuromuscular transmission, which results from the binding of autoantibodies to proteins involved in signaling at the neuromuscular junction. These proteins include the nicotinic acetylcholine receptors (AChRs) or, less frequently, a muscle-specific tyrosine kinase (MuSK) involved in AChRs clustering. Chan and Liu noted that diagnosis of MG relies on clinical as well as investigatory evidences. Among the usual investigatory tools, the Tensilon (edrophonium chloride) test has been given the credit as a test of high sensitivity (80 to 85%). Antibodies to AChRs are found in about 80% of persons with myasthenia gravis.
Vincent and Leite noted that some of the 20% of patients with MG who do not have antibodies to AChRs have antibodies to MuSK, but a full understanding of their frequency, the associated clinical phenotype and the mechanisms of action of the antibodies has not yet been achieved. Moreover, some patients do not respond well to conventional corticosteroid therapy. These researchers reported that MuSK antibodies are found in a variable proportion of AChR antibody negative MG patients who are often, but not exclusively, young adult females, with bulbar, neck, or respiratory muscle weakness. The thymus histology is normal or only very mildly abnormal. Surprisingly, limb or intercostal muscle biopsies exhibit no reduction in AChR numbers or complement deposition. However, patients without AChR or MuSK antibodies appear to be similar to those with AChR antibodies and may have low-affinity AChR antibodies. A variety of treatments, often intended to enable corticosteroid doses to be reduced, have been used in all types of MG with some success, but they have not been subjected to randomized clinical trials. The authors noted that MuSK antibodies define a form of MG that can be difficult to diagnose, can be life threatening and may require additional treatments. An improved AChR antibody assay may be helpful in patients without AChR or MuSK antibodies. Randomized clinical studies of drugs in other neuroimmunological diseases may help to guide the treatment of MG.
Romi et al examined MG severity and long-term prognosis in seronegative MG compared with seropositive MG, and reviewed specifically at anti-AChR antibody negative and anti-MuSK antibody negative patients. A total of 17 consecutive sero-negative non-thymomatous MG patients and 34 age- and sex-matched contemporary sero-positive non-thymomatous MG controls were included in a retrospective follow-up study for a total period of 40 years. Clinical criteria were assessed each year, and muscle antibodies were assayed. There was no difference in MG severity between sero-negative and sero-positive MG. However, when thymectomized patients were excluded from the study at the year of thymectomy, sero-positive MG patients had more severe course than sero-negative (p <0.001). One sero-positive patient died from MG related respiratory insufficiency. The need for thymectomy in sero-negative MG was lower than in sero-positive MG. None of the sero-negative patients had MuSK antibodies. The findings of this study showed that the presence of AChR antibodies in MG patients correlates with a more severe MG. The authors noted that with proper treatment, especially early thymectomy for seropositive MG, the outcome and long-term prognosis is good in patients with and without AChR antibodies.
Lee et al stated that several reports from Western countries suggest differences in the clinical features of patients with MuSK antibody-positive and MuSK antibody-negative sero-negative MG. These investigators performed the first survey in Korea of MuSK antibodies, studying 23 patients with AChR-antibody sero-negative MG. MuSK antibodies were present in 4 (26.7%) of 15 generalized sero-negative MG patients and none of 8 ocular sero-negative MG patients. All 4 MuSK positive patients were females, with pharyngeal and respiratory muscle weakness, and required immunosuppressive treatment. However, overall disease severity and age at onset was similar to that of MuSK-negative MG and treatment responses were equally good.
In the appropriate clinical setting (lack of AChR-Ab and typical clinical features listed below), MuSK testing can clarify the diagnosis and perhaps direct treatment. However, the initial management of clinically apparent myasthenia should be the same for patients with or without AChR antibodies; this would change only if future studies find additional therapeutic differences related to MuSK status.
Although some differences between MuSK-positive and MuSK-negative MG have been found, the initial management of clinically apparent MG should be the same for patients with or without MuSK antibodies; this would change only if future studies show significant therapeutic differences related to MuSK status.
GALOP Autoantibody
A peripheral neuropathy syndrome described by Pestronk is the gait disorder, autoantibody, late-age onset, polyneuropathy (GALOP) syndrome that resembles anti-MAG neuropathies with distal sensory loss, ataxia, and demyelinating features on nerve conduction velosity testing. High titer IgM antibodies bind to a central nervous system myelin antigen preparation that copurifies with MAG. GALOP syndrome appears to be immune-mediated. However, there is insufficient evidence on the clinical usefulness of measuring the GALOP autoantibody for the diagnosis and treatment of GALOP syndrome in the peer-reviewed medical literature.
Finally, it has been estimated that up to 1/3 of peripheral neuropathies are idiopathic. These neuropathies are classified by their clinical syndrome, which include sensory axonal polyneuropathy with large and small fiber involvement, small-fiber sensory neuropathy, large-fiber sensory neuropathy, sensorimotor neuropathy, and autonomic neuropathy (Shy-Drager syndrome). Treatment is usually symptomatic, although some patients may respond to a trial of immunotherapy. More research into their causes as well as the development of better diagnostic tests and treatments are needed.
Dermatomyositis/Polymyositis
Several serological abnormalities (e.g., formation of specific autoantibodies) have been identified in patients with dermatomyositis (DM) and polymyositis (PM), however their routine use has not yet been established. As a group, these antibodies have been termed myositis-specific antibodies (MSAs) and include antibodies to EJ, Jo-1, Ku, Mi-2, OJ, PL-7, PL-12, signal recognition protein (SRP), and U2 small nuclear ribonucleoprotein (snRNP). Pappu and Seetharaman stated that anti-nuclear antibody assay findings are positive in 1/3 of patients with PM and in only 15% of patients with inclusion body myositis, and about 4% of patients with PM have antibodies to SRPs. Miller noted that electromyography (EMG) and tissue biopsies of skin and/or muscle are important facets of the evaluation of patients with possible DM or PM. Abnormalities in EMG may support the diagnosis of DM or PM but are not diagnostic. Moreover, skin biopsy (e.g., findings of Gottron's sign, the shawl sign, and erythroderma) can provide confirmation of the diagnosis of DM. In addition, muscle biopsy is the definitive test for PM, in which skin lesions are not seen.
Although MSA may offer valuable information regarding prognosis and potential future patterns of organ involvement, there is no reliable evidence that detection of these antibodies influences clinical management. Furthermore, while there is some limited evidence on the association between the presence of MSA with cancer-associated myositis (CAM), the available literature on this association is limited. Chinoy et al stated that these antibody tests are not foolproof, and do not replace the need for intensive surveillance for cancer in persons with new onset myositis. The authors concluded that before these results can be applied clinically, confirmation in a large independent trial with prospective follow-up is needed.
Kalluri et al stated that the anti-synthetase syndrome consists of interstitial lung disease (ILD), arthritis, myositis, fever, mechanic's hands, and Raynaud phenomenon in the presence of an anti-synthetase autoantibody, most commonly anti-Jo-1. It is believed that all the anti-synthetases are associated with a similar clinical profile, but definitive data in this diverse group are lacking. These researchers examined the clinical profile of anti-PL-12, an anti-synthetase autoantibody directed against alanyl-transfer RNA synthetase. A total of 31 subjects with anti-PL-12 autoantibody were identified from the databases at the Medical University of South Carolina, the University of Pittsburgh Medical Center, Johns Hopkins Medical Center, and Brigham and Women's Hospital. The medical charts were reviewed and the following data were recorded: demographic information; pulmonary and rheumatological symptoms; connective tissue disease (CTD) diagnoses; serological autoantibody findings; CT scan results; BAL findings; pulmonary function test results; lung histopathology; and treatment interventions. The median age at symptom onset was 51 years; 81% were women and 52% were African American; 90% of anti-PL-12-positive patients had ILD, 65% of whom presented initially to a pulmonologist; 90% of anti-PL-12-positive patients had an underlying CTD. Polymyositis and DM were the most common underlying diagnoses. Raynaud phenomenon occurred in 65% of patients, fever in 45% of patients, and mechanic's hands in 16% of patients. Test results for the presence of antinuclear antibody were positive in 48% of cases. The authors concluded that anti-PL-12 is strongly associated with the presence of ILD, but less so with myositis and arthritis.
Antibody tests may be considered medically necessary for the diagnosis and treatment of paraneoplastic neurologic disorders when ordered or performed by a Neurologist and all of the following are met:
The patient displays clinical features of the paraneoplastic neurologic disease in question, and
The result of the test will directly impact the treatment being delivered to the patient, and
After history, physical examination, and completion of conventional diagnostic studies, a definitive diagnosis remains uncertain, and one of the following antibodies is suspected:
Anti-AChR | |
Anti-amphiphysin | Anti-Ri (ANNA-2) |
Anti-bipolar cells of the retina | Anti-Tr |
Anti-CV2/CRMP5 | Anti-VGCC |
Anti-Hu (ANNA-1) | Anti-VGKC |
Anti-Ma (MA1, MA2) (Anti-Ta) | Anti-Yo (APCA-1) |
Anti-recoverin | Anti-nAChR |
Antibody tests may be considered medically necessary for the diagnosis and treatment of neurologic disorders when ordered or performed by a Neurologist and all of the following are met:
The patient displays clinical features of the neurologic disease in question, and
The result of the test will directly impact the treatment being delivered to the patient, and
After history, physical examination, and completion of conventional diagnostic studies, a definitive diagnosis remains uncertain, and one of the following antibodies is suspected:
Anti-AChR | |
Anti-asialo-GM1 | Anti-GT1a |
Anti-GM1 | Anti-La |
Anti-GM2 | Anti-MAG |
Anti-GAD | Anti-MUSK |
Anti-GD1a | Anti-Ro |
Anti-GD1b | Anti-sulfatide |
Anti-GQ1b | Anti-VGCC |
Antibody tests for screening of neurologic diseases are considered investigational. These tests are only considered medically necessary when ordered selectively for evaluating persons with signs and symptoms of specific immune-mediated neuromuscular conditions.
None
The coverage guidelines outlined in the Medical Policy Manual should not be used in lieu of the Member's specific benefit plan language.
Medically Necessary is defined as those services, treatments, procedures, equipment, drugs, devices, items or supplies furnished by a covered Provider that are required to identify or treat a Member's illness, injury or Mental Health Disorders, and which Company determines are covered under this Benefit Plan based on the criteria as follows in A through D:
A. consistent with the symptoms or diagnosis and treatment of the Member's condition, illness, or injury; and
B. appropriate with regard to standards of good medical practice; and
C. not solely for the convenience of the Member, his or her Provider; and
D. the most appropriate supply or level of care which can safely be provided to Member. When applied to the care of an Inpatient, it further means that services for the Member's medical symptoms or conditions require that the services cannot be safely provided to the Member as an Outpatient.
For the definition of medical necessity, “standards of good medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, and physician specialty society recommendations, and the views of medical practitioners practicing in relevant clinical areas and any other relevant factors. BCBSMS makes no payment for services, treatments, procedures, equipment, drugs, devices, items or supplies which are not documented to be Medically Necessary. The fact that a Physician or other Provider has prescribed, ordered, recommended, or approved a service or supply does not in itself, make it Medically Necessary.
Investigative is defined as the use of any treatment procedure, facility, equipment, drug, device, or supply not yet recognized as a generally accepted standard of good medical practice for the treatment of the condition being treated and; therefore, is not considered medically necessary. For the definition of Investigative, “generally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, and physician specialty society recommendations, and the views of medical practitioners practicing in relevant clinical areas and any other relevant factors. In order for equipment, devices, drugs or supplies [i.e, technologies], to be considered not investigative, the technology must have final approval from the appropriate governmental bodies, and scientific evidence must permit conclusions concerning the effect of the technology on health outcomes, and the technology must improve the net health outcome, and the technology must be as beneficial as any established alternative and the improvement must be attainable outside the testing/investigational setting.
05/01/2013: New policy added. Approved by Medical Policy Advisory Committee.
08/18/2015: Medical policy revised to add ICD-10 codes.
06/07/2016: Policy number L.2.04.400 added. Policy Guidelines updated to add medically necessary and investigative definitions.
08/21/2023: Policy reviewed. Policy statements unchanged. Policy Guidelines updated to change "Nervous/Mental Conditions" to "Mental Health Disorders" and "Medically Necessary" to "medical necessity."
08/20/2024: Policy reviewed; no changes.
Aetna Clinical Policy Bulletin: Antibody Tests for Neurologic Diseases
Covered Codes
Code Number | Description | ||
CPT-4 | |||
83519 | Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, by radioimmunoassay (eg, RIA) | ||
83520 | Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, not otherwise specified | ||
84182 | Protein; Western Blot, with interpretation and report, blood or other body fluid, immunological probe for band identification, each | ||
84238 | Receptor assay; non-endocrine (specify receptor) | ||
86235 | Extractable nuclear antigen, antibody to, any method (eg, nRNP, SS-A, SS-B, Sm, RNP, Sc170, J01), each antibody | ||
HCPCS | |||
ICD-9 Procedure | ICD-10 Procedure | ||
ICD-9 Diagnosis | ICD-10 Diagnosis | ||
V80.09 | Special screening for other neurological conditions | Z13.858 | Encounter for screening for other nervous system disorders |
CPT copyright American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association.